
NASA-CR-194757

/-.;.5;,7/2.-J
//

F- 51

ADEPT

AUTOMATED DESIGN EXPER I

THEORETICAL MANUAL

Prepared by:
John P. Frazier

U.V.L. Narayana
- of-

Autodesk, Inc.

1303 Hightower Trail, Suite 170
Atlanta, GA 30350

Prepared for :
NASA - Lewis Research Center

Cleveland, OH 44135

Contract # NAS3-25150

An Expert System for Finite Element Modeling

O,

o,t ¢N
_ ,,t"

! --, aO
,4" U 0 _
O" ¢: ,-4

UJ
I-- ...J

OZ
1,,,,- _1_

J

et
u.,I I,.--
_w

0
w

i_ i,,,.. _,._

0". Lu

_ I.LJ b"l

I Z_
"_0
v) _-- 4o

J
SBIR RIGHTS NOTIO_ (APRIL 1985)

/
This SBIR data is ftm_hed with_nder NASA c_ntract No. NAS3-25150. For a period of 2 years after

acceptance of all ilems to be debVvered under _ntract_e Government agrees to use this data for Govcrnraent

purposes only, and it shall not be disclosed outside tft_w_ernment (including disclosure for procurement purposes)

during such period without permission of the Contract_"_pt that, subject to the foregoing use and disclosure

prohibitions, such data may _ dLsclo_d for u.s¢. hy/uppoff_tractors. After the aforesaid 2-year period the
Government has • roya]ty4"_ee license to use,and to_thorize othe_ use on its behalf,this data for Government

purposes, but is telitwed of all disclosure prohtl_ltio_ and assumes nobly for unauthorized use of this data by

June 20, 1990

ADEPT THEORETICAL MANUAL

TABLE OF CONTENTS

PAGE NO.

Objectives for Adept ... 1

Development of Adept ... 2

Implementation and Testing of the System 4

Final Delivery Version of Adept 8

Figure 1.

Figures

Architecture of Adept System 9

Appendices

Appendix A. A Survey of Relevant CAD, FEA, and Expert

System Capabilities 10

Appendix B. General Knowledge Rule Base for Clips 22

Appendix C. Analysis Problems with Resulting Meshes 41

OBJECTIVES FOR ADEPT

From the start, Adept was targeted to be a system that would allow a design

engineer having little or no practical experience in performing finite element
analysis to be able to choose an appropriate modeFmg and analysis strategy
for a given problem. There was the original restriction that the system would
be limited to structural analysis. During the development of the system it
became evident that additional restrictions should be added. Early in me

development of the system the NASA Lewis project manager made the wise
recommendation that instead of building an expert system that attempted to

handle a broad variety of capabilities it would be prucient to limit the bounds
of the working environment. His experience with expert systems .had shown
many examples of systems that began their development o/cle attempting to
do all; unfortunately, these systems ended up in reality doing very utue ana
in effect serving as a learning experience for choosing your domain carefully.
After this discussion, there were additional restrictions added to the Adept

_stem. The project was limited to linear static analysis of isotrol_ic materials.

ithin any one analysis problem, there would not be multiple emment ty_es
or multipl_e material properties. The element class was limited to trian_ es
and tetrahedrals due to the choice of the automatic finite element modemr.

Special analysis classes for plane stress and plane strain would be included.

Ever_r. attempt would be made to develop the system with an open
architecture. Any workable system should Be capabIe of future additions.
The rule base would be targeted as a general set that could handle objects
that would be loaded with forces ana pressures. ,The open architecture
would allow the user to alter the rule base in the event that application of

finite element analysis to a certain discipline .might have some peculiar
requirements. For example, the modelin_practice used in the automobile

industry might be similar, but not quite the same as the modeling practice
used in an aerospace application. The alteration or addition of certain rules
might allow the user to cause those meshing changes to be realized. Refer to
the programmer's manual for ways to customize the starting rule set of
Adept.

One of the major intents of Adept was to make the job of performing fin!re '_

element analysis as simple as possible for the designer. Many of the
techniques fundamental to the practice of finite element analysis demand that
assumptions be made. The physical world situation is simplified to a

computer model that should require the minimum amount of resources to
attain the desired solution. One of the goals then is to decrease the needed
computation time and still supply a result that sufficiently describes the
desired output. This maybe a stress contour, or a maximum stress value, or

perhaps a deflected shape.

-2-

DEVELOPMENT OF ADEPT

A survey was done of the commercial or otherwise available software that
would comprise the computer aided design(CAD), the finite element
modeling(FEM), and the expert system(ES) portion of the Adept system. A
study was also done of the most popular finite element analysis(FEA) codes
to determine which solvers to interf_ice with. The individual parts would be

integrated into a workable system. Two major considerations in the final
decision of these software comPonents were the capabilities of the individual
packages and the ability to tail-or these into a system. Access to source code
was an important consideration in that our development team could add the
needed capabilities that were not in the standard commercial package.
Access to source code also allowed us the opportunity to design a system that
would be computationally efficient and would in effect have an acceptable

response time for various system operations.

Refer to Appendix A for the Task 1 report, "A Survey of Relevant CAD, FEA,
and Expert System Capabilities", for a full description of the software
packages considered and exactly why certain programs were eventually
ctecided upon. For a computer aideddesignpackage AutoSolid 3.1 from
Autodesk was chosen. AutoSolid also inclucted- an automatic finite element

modeling option which was used. The survey of existing FEA packages
showed that NASTRAN from MacNeal Schwendler and ANSYS from

Swanson Analysis dominate the finite element field. These were the
packages we would interface with. For an expert system shell the CLIPS
package from the Johnson Space Center was chosen. ,

Two routes were taken to build the initial expert system rule base for the

Adept program. An in-depth literature search Was performed with the goal
of locating substantial information on the practice of building finite element
models. Information relating to the .general use of FE was located and the
manuals for NASTRAN and ANSYS were studied. The information that was
found on theoretical issues of FEA was only coded into the rule base if the

practical consequences of such an issue could be boiled down to a rule that
the program should be bound to follow. The personal experience of both_

members of the design team and independent engineers with practicing
experience in the apphcation of finite element analysis was used as a resource
to gain rules for the system. Sample problems were setup and those
interviewed were questioned as to how they would generate an applicable
model for some specified real worldproblem. They were asked how much of
the real world situation they would model, what element type they would
use, how many elements they would use, and what aspects of the problem

would they ignore.

The rules that were gained were then divided into two broad categories.
Some rules applied to the general principles of FEA. These formed the
general knowledge base. Other rules specific to using NASTRAN or ANSYS
were divided into groups of package specific rules.

In the integration of the various software programs and rules into a workable

expert system for finite element modeling, it was evident that there were a

few missing pieces. The largest piece that was needed we will call the
environment descriptor. This is the software that was generated to make
determinations about the solid that was to be analyzed. As an example, the
rules might need to know if the solid was an extrusion. AutoSolid's geometric
definition includes both a CSG tree and a list of surfaces, edges, and vertices

and their position in space, but this does not immediately designate the solid
into such a class. Software was needed to check the mathematical definition
to see if the solid was an extrusion. Additional checks were needed to

classify the other symmetries of the solid.

The Adept system was developed as a combination of pieces which would
later be assembled. The rule base in a large part specified the information

that was needed to classify the modeling situation. In the event that this
information was not obtainable directly from the AutoSolid database (which

was almost always), intermediate routines would be written for the
environment descriptor to quantify this information from the geometric
database. This allowed various members of the design team to

inde_p,endentlwoul_Ylaterdevelop and test their separate parts of the project. Thesepiec6s be assembled and the last few missing pfeces would be

supplied through a joint effort. Separating the pieces hi[owed a quicker

development of the entire project, and at a later date the missing pieces were
evident and were developed and added.

The hardware selection that had originally been proposed as Apollo

workstations was changed to a Sun 4 machine and two Sun 386i machines.
By waiting as late in the project as possible to specify the computer
manufacturer and model, the most economical computing hardware was
obtained. The ever decreasing cost of processing power makes it a wise

choice to wait as long as possibIe to actually buy the tiardware.

"4

-4-

IMPLEMENTATION AND TESTING OF THE SYSTEM

Adept functions as an add-on application program tied to AutoSolid. This is

accomplished through the AutoSolid Programming Interface (API) capability
of AutoSolid. A full explanation of how to develop and run an application

program_ tied to the geometric and windowing abilities of AutoSolid is
covered in the AutoSoHd Programming Interface Reference Manual. Figure 1

depicts the layout for the Adept system. AutoSolid can be conceptualized as
the User Interface, the Solid Modeler, and the Geometric Database. The User
Interface handles all the menuing, windowing, and viewing of the solid. The

user builds, alters, and queries the existing solid via this interface. The Solid
Modeler handles the mathematics involved in dealing with the solids. This

part can be termed the geometry engine. All information defining the so!id
resides in the Geometric Database. Changes to the detinition ot the sofia

result in updates to the database. The development of programs with API
allows the user to access routines in both the User Interface(example, new

menus can be generated) and the Solid Modeler(example, commands can be

given to alter the working copy of the solid).

The standard version of AutoSolid also includes a package to perform

automatic finite element mesh generation for solids and surfaces. The
package generates triangular and tetrahedral elements via an octree method.
The user controlled package requires the user to choose the element type, the
mesh density, the desired-surfaces or solid, apply the loading and boundary
conditions, and to perform modeling checks. Adept automatically
accomplishes many of these operations. The ,standard version of
AutoSolid.FEM is depicted in Fig:ure 1 with the FEA Input Data File circle.

Once the problem has been solved with a finite element analysis program the
solution output can be postprocessed to view deformations and stress
contours.

In Figure 1 everything to the right of the User Interface box is the Adept

module. This is an application program that is attached to AutoSolid viathe
API hookup. The Envxronment Descriptor will query the Geometric taataDase
and make classifications of the solid of interest. This could relate to:,:

symmetries, the presence of depressions and protrusions, the relative size of
cutouts, etc. AII these determinations are made from software written for

Adept. The Expert Controller determines where required information will be
obtained from. There are times when information can be algorithmically

obtained and there are other times where the user must supply _mformation.
The Controller also can be viewed as the additional needed software that

does not fall under the Environment Descriptor. In the way that Adept.is

designed, the loads and boundary conditions are associated directly with the
solid and features of the solid. In the standard AutoSolid.FEM loads and

boundary conditions are defined directly on the finite element mesh. The
additional software required to supply this capability can be pictured as part

of the Expert Controller.

The Inference Engine is an embedded version of CLIPS, an exvert system
shell from the NA"SA Johnson Space Flight Center. The knowledge is l'n the
form of a rule base that drives the accumulation of needed information from

-5-

both the user and AutoSolid. Decision branches are made based on the facts

in the working memory definin$ the specific situation. Our set of rules for -_"
finite element modeling are deplcted in Figure 1 as the General Knowledge
Base and the Package Specific Knowledge Bases 1 and 2(for Ansys and
Nastran). Appendix B is a listing of the General Knowledge Base in a CLIPS
format. It should be noticed that although many technical rules for modeling
were acquired for the full rule base, the task of developin8 a working finite
element system brought to light the need for other informahon to be acquired
and categorized. Personal experience and the interviews with practicing

experts alIowed the process of building an appropriate meshing scheme to be
broken in a procedure that encompassed a series of stages.

The stages for proceeding from a physical world situation to a computer
model were segmented as follows. This is also thepath that is followed in
Adept. The purpose for the analysis must be defined along with the
resources that are available to accomplish the analysis. It will be important to
know whether a general behavior, basically a deformation study is _lesired or
whether a detailed stress analysis is required. This difference can greatly
influence the model that must be generated.

The solid, the loadings, and the boundary conditions must be defined at this

first stage. Merely having the solid of interest is not enough. These are the
pieces that any analyst requires in the process of deciding what to model and
how to model it. Without these predescribed pieces there is almost no reason
to continue the generation of a mathematical model.

Next, the geometric features of the solid must be ranked as to how they.affect
the stress results. Some features may be ignorable, others may reqmre an
increased mesh density in their vicinity. In the ,Adept program these
features can be ranked as both simple features(surfaces, edges, and vertices)

and as complex features(depressions and protrusions). Very unimportant
complex features will be removed from the working copy of the original solia
via 15oolean operations.

Then the geometric symmetries of the working solid will be categorized.
Many of the time saving techniques of finite element modeling allow the solid
to be reduced at mirror planes if certain conditions exist. The fact that as the
model size doubles the computational requirements increase by a factor of.
four makes this such an important technique. Redundancies in the finai-
result, should that be deformations or stresses should not be recalculated in

an effort to save computation time.

The loads and boundary conditions(lbcs) are checked against the geometric
symmetries that are present. The lbcs are categorized and the working copy
of the solid is reduced along these planes of symmetry, if possible. The
appropriate boundary conditions are defined in the event the solid is reduced
in any direction.

Attempts are made to categorize the solid as rod-like(one dimensional),
plate-like(two dimensional), or blob-like(three dimensional). These
categorizations with additional information will lead to an appropriate choice

of an efficient element type. The simpler element type that can be used, the
less computation time will be required to attain a solution. Solid element
types require the most computation time. One dimensional types require the

-6-

least.

The geometry and the loading may allow the physical situation to be
categorized as a special analysis case. The cases of plane strain and plane
stress are considered as possible analysis routes. These are again valuable in
saving computation time if the situation lends itself to these simplifications.
Finally, an appropriate element type is chosen from the set that is offered.
Linear and quadratic tetrahedrals/along with triangular shells and membranes

are the possible alternatives for this system.

The octree method requires that the solid or surfaces to be meshed are
specified. In the event of a tetrahedral mesh this means the working solid is
passed to the mesher. In the event of a shell or membrane mesh the desired
surfaces must be specified. Adept chooses an appropriate set of surfaces for

the problem at hand. Adept also attempts to position the octree box in
relation to the features that are present. At least one corner of an octree cell

should be located inside the boundary of all complex features. This is
automatically accomplished within the limits of the mesh density level

setting.

Once the mesh has been generated the system transfers the specified loads

and boundary conditions from the working solid to the now existent mesh.
In the event of a surface mesh the system also associates an appropriate
thickness with the surface elements. This is accomplished without user

intervention. The resulting information is written out in a format that is
compatible with the chosen analysis code. This is the input file for the

analysis code of choice.

Once the analysis has been performed and a solution output has been
generated the user is returned to the postprocessing portion of
AutoSolid.FEM, in order that deformations and stress contours can be

generated. .

In Figure 1, the circle, Working Memory includes the facts that are asserted
describing the current situation at hand. The facts that makeup the Working
Memory are dynamic, and as CLIPS proceeds the resident information
changes. During an Adept session facts are asserted and retracted to define
the current status. These facts might describe characteristics of the sqlid,_

being considered for finite element modeling or the facts might concern what
menu is being shown to the user. The presence of facts determine what rules
fire. The firing of these rules can have the following consequences. Existing
facts can be retracted to remove information from the working memory. New

facts can be generated. Functions can be called to obtain additional
information about the modeling situation. Refer to the Prog-rammer's Manual

for a more in-depth description of the workings of the rules files and CLIPS.

In the development and testing of Adept there was a need to select a
number of sample problems to model. Four solids were agreed upon as
problems that should be used to test the system. These four test problems
were worked by both the Adept system and practicing experts in the field of
finite element analysis. Refer to Appendix C for the test solids and the mesh
that resulted from an Adept session. The modeling results were compared tO
validate the fact that the techniques used by the experts and Adept are
similar. Exact comparisons were avoided because FEA is the result of

,¢-

-7-

numerous assumptions in the path of going from the real world situation to a
representative model. Assumptions determine how much of the origina!
solid is modeled and with what element types. The Adept system generated

meshes that were similar to the choices Of the practicir}g experts. The best
and most experienced analysts often build models that do not visually match
the solid of interest. Adept and the experienced users captured the

important aspects of the real world situation. The goal is to simulate the
physical world situation with the simplest m_odel t-hat requires the !east
amount of computer time to attain a solution. It is common for the resulting
model used by a number of experts to not match. They may have made
different assumptions in ranking the importance of some characteristics ot the
geometry or of the real world loading. Another interesting tact is that even
for exactly the same boundary and specified loads, one should not expect two

practicing analysts to generate exactly the same mesh pattern and density.
There are an infinite number of meshes that will result in an acceptable

answer. Again the more experienced analysts tend to choose a route that will
be time efficient in creation and solution requirements.

-8-

FINAL DELIVERY VERSION OF ADEPT

The delivery version of Adept is capable of generating an appropriate mesh
for problems requiring surface or solid element types. Many automatic
mesfiing systems only take into account the geometry to be modeled. Adept
attempts to tailor the meshing approach to the geometry, loads, and
boundary conditions that are present. The system algorithmicaUy attempts to
determine all the needed information that it can. In many cases, before

proceeding the user is given the opportunity to override the determinations
of the system. The system should prove tobe a good training tool in that it
gives a novice user an indication of how an experienced finite element analyst
proceeds from a solid to a reasonable meshing strategy. Appendix C shows
some starting solids and the meshes that were generated for these problems.

Refer to the user's manual for instruction on how to use the current Adept

system. The system does guide the user in the process of generating a
reasonable mesh, so a casual user should not feel as though it is a

requirement to read the entire user's manual.

The programmer's manual includes enough instruction to allow the user to
make changes to the current version of Adept. Many examples are given on
how the system works and where specific information resides. The manual
explains the operation of CLIPS and the rule base in the expectation that the
user may have a desire to make changes to the current version of Adept.

• "._C

-9-

I User [

Descr|ptor

Expert
Controller

Inference

Engine

Figure 1. Architecture of Adept System

- 10 -

Appendix A

A Survey of Relevant CAD, FEA, and Expert System Capabilities

as of June, 1988

J

°

- 11 -

IQ

Introduction

This document describes the results of the first principal task for NASA con-

tract #nas3-25150 (ADEPT). Ultimately, this effort will lead to the integration of

an expert system containing knowledge about finite element meshing and analysis

with an actual solid modeler. The resulting system should assist a design engineer

in choosing a modeling and analysis strategy for a given problem. Task 1 was

largely an information gathering phase of the project leading to decisions about

the software environment under which the system will operate. In particular, the

ADEPT expert system requires an interface to three external software systems: a

computer aided design package, an expert system shell, and a finite element

analysis package. The organization of this report reflects surveys done in each of

t,hcse areas.

2. Computer Aided Design Environments

A key component to building the ADEPT system is to supply an effective

way for a designer to describe the geometry of the part under consideration.

There are several packages commercially available to provide this modeling capa-

bility. In general, these systems can be classified as either wireframe, surface, or

solid modelers depending on the level at which they represent geometry.

Wiret'rame systems provide a natural extension of traditional drafting tech-

niql,es. The usual primitives, lines, arcs, circles, text, etc. are allowed to be arbi-

t,r_rily positioned in space. The drafting software can then project these elements

according to an arbitrary view to produce mechanical drawings.

The second approach, surface modeling, extends the set of modeling primi-

tives from one dimensional elements (lines, arcs, etc.) to surfaces. Surfaces are

jllxt, aposed in such a manner that they (hopefully) bound a real object. Objects

defined in such a manner can generally be displayed with hidden lines removed,

or as a shaded solid. Because only the surface of an object is defined, however,

._uch modelers do not have a notion of the inside or outside of an object. This

precludes implementation of many important engineering applications such as

1,11fee dimensional finite element meshing in such systems.

The final approach to geometric design extends the modeling building blocks

from two-dimensional surfaces to solids. This approach, known as solid model-

int. is becoming the technique of choice in the mechanical design industry.

A solid modeling system enables the user to create only solids which can

physically exist. It creates unambiguous solids, a property essential to perform-

i.g l ain rin6 gpplic t, ien_s, Finally, c0mp! x_ dim n ign l hap .s ean
of Len be consLrucLed more quickly and efficien_ly Lhan wit, h simple drat'tlng prim-

itives.

Since the ultimate ADEPT system relies heavily on automatic finite element

meshing facilities, a solid modeling system was deemed the most appropriate

- 12-

modeling environment. Several systemswere examined in order to determine a

comprehensive set of features available in the industry. Included in the survey

were two established solid modeling systems, as well as three newer entries into

the marketplace. The results of the study are summarized in the following table.

System Company Type Sculptured • Hardware Price

Name Surfaces Platforms

AutoSolid Autodesk, Inc. Hybrid No AT Comp. 5000

CSG/B-rep Workstations

Aries Hybrid AT Comp 18,800Concept-

station

No

customhdwr

Pro/Engineer Parametric Feature-Based No

Technology

I/EMS Intergraph B-rep Yes(NURBS)

Workstations 9500

"50,000Intergraph
Workstations

I-DI_AS SDRC B-rep Yes(NURBS) Workstations 6000-50000

Table 1 - Comparison of Available Solid Modelers

2.1. AutoSolid The AutoSolid modeler marks Autodesk's entry into the

M('A]3 market. The modeler is based on the PADL software developed at the

Ib_iversity of Rochester during the early 1980's. The fundamental modeling ele-

ments are the quadric surfaces (plane, cone, cylinder, and sphere) plus the torus.

Extensions to free form surfaces are anticipated in late 1988. Users of AutoSolid

de._ign using a combination of sweeps and set operations on solids (union, inter-

section, and difference).

An important feature of the AutoSolid environment is a C language pro-

gramming library which provides outside developers access to the system capabil-

il.ies through a programming interface. In particular, this allows the ADEPT

¢h,w, lopment to proceed without an unduly tight coupling to the AutoSolid

environment.

2.2. ConceptStatlon Aries Technology began marketing a solid modeler

ai,ned at the AT level of computers in late 1986. By introducing custom

hardware, they were able to perform and display set operations on solids at

speeds significantly greater than those achievable through software alone. Their

init, ial finite element support was basically a domain mapped two-d mesher,

although tt_e current release has support for automatic three-d meshing as well.

2.3. Pro/Engineer Parametric Technology introduced an innovative new solid

modeler at the 1987 Autofact conference. Rather than presenting users with the

general se_ operations for modeling, the Pro/Engineer allows a designer to work

with a specific set of "features" (e.g. slots, fillets, chamfers, etc.) At present,

- 13-

however, no support for finite element meshing is provided. This system
currently runs in a workstation environment (SUN or Apollo).

2.4. I/EMS The "Engineering Modeling System" from Intergraph (Huntsville,
AL) is an integrated environment for mechanicaldesignand analysis. Requiring
a special Intergraph workstation to run, this system is substantially more expen-
sive than any of thosepreviously described.I/EMS is a boundary representation
modeler drawing on the non-uniform rational b-spline (NURBS) formalism as the

bm_is for their geometry.

2.5. I-DEAS Like the Intergraph system, the I-DEAS package from SDRC is

priced at the high end of the modeling spectrum. Although their geometry uses

N'URBS as the principal modeling tool, curved surfaces are approximated by

planar facets for the purposes of intersection. This modeler works in conjunction

with the "SUPERTAB" finite element pre and post processor.

3. Finite Element Modeling and Analysis Packages

Several of the leading finite element modeling and analysis packages were

investigated for possible inclusion in the ADEPT system.

For finite element modeling purposes, surveys were conducted on the various

st.ate of the art techniques of mesh generation from a variety of papers [1, 2] and

,:o_st_]tants (Dr. Shephard, Dr. Genberg). Additionally, the handbook [3] pro-

vided an in-depth study of several of the popular analysis packages and details of

part, icular applications. Finally, a survey of the various c_)mmercial finite ele-

nle_lt modeling capabilities has been obtained from sources such as Don Brown

(D.[-I. Brown Associates) and Bob Johnson (CIMDATA). A brief comparison of

exi_t_ing state of the art systems (needed for the ADEPT s.ystem) is given in table
2.

l. J. W. Jones and H. H. Fong, "Evaluation of NASTRAN," Structural

Mechanics Software Series 4 pp. 147-237 University Press of Virginia,

(1984).

2. E. Schrem, "Status and Trends in Finite Element Software," State-of-the-art

_urveys on Finite Element Technology Chapter X pp. 325-340 The

American Society of Mechanical Engineers, 0.

3. C.A. Brebbia, Finite Element Systems, Springer-Verlag, Berlin, Heidelberg,

New York (1982).

- 14-

Company Company CAD FEM Market
Name Location Capabilities Capabilities Emphasis

PDA Irvine, Hyperpatch Interactive,
CA Domain Mapped

SDRC Solidmodeling

A'FP

Aries

Cincinnati,
OH

Campbell,
CA

Lowell,
MA

Solidmodeling

Solidmodeling

Domain Mapped,
Semi-Automatic
Automatic
frames & WS)
Domain Mapped,
Automatic

Autodesk Atlanta, Solidmodeling Semi-Fully
GA drafting Automatic

High-end (main-
framed & WS)
High-end (main-
frames & WS)
High-end (main-

Low-end (PC &

Low-end (PC &
ws)

Table 2 - Finite Element Modeling Systems

Though there are a number of other CAD packages with FEM capabilities

Autodesk's package was the logical choice as the source code is easily amenable

to the implementation of ADEPT algorithms and is readily available. Besides

q,he automation of mesh generation algorithms, feature based attribute

specification and complete, unambiguous geometric representation provide an

ideal environment for the interaction of the expert system. Though the finite ele-

mcnt modeling is currently restricted to solid and surface elements, the DXF

interface to the industry standard AutoCAD opens the gateway for drafting and

surface modeling capabilities and a variety of finite element ihodeling capabilities

in 'lower' dimensions.

The major players in the FEA market were evalu_/ted for product capabili-

ties, user friend.lines.s, service and market strengths. Apart from the various

papers and articles [4] information was also gleaned from sources such as DATA-

QUEST (for market study). A list of some of the major players is given below.

,I. Mark S. Shephard, Kurt R. Grice, and Marcel K. Georges, "Some Recent

Advances in Automatic Mesh Generation ," Modern Methods for Automatic

Finite Element Mesh Generation, K. Baldwin, Ed., ASCE,, (1986).

- 15 -

Company Company Pre- Solution Post- Market

Name Location Processor Processor Processor Emphasis

MSC/GRASP MSC/NASTRAN MSC/GRASPMacNeal-

Schwendler

Swanson

Analysis

PDA

Engineering

MARC analysis

Corp.

SDRC

Systems Dev-

elopment Corp,

Structural

Mechanics Lab

Los Angeles,

CA

Houston,

PA

Palo Alto,

CA

Prep7

Irvine, PATRAN-G

CA

MENTAT

Milford,

OH

Minneapolis,

MN

Los Angeles,

CA

Oak Park,

MI

P,_rec Eng, Knoxville,

(:ons, TN

F_NIRC

SUPERTAB

ANSYS Post 12, 21

General

Purpose

General

Purpose

EASE 2 PATRAN-G FEM, Linear

Analysis

MARC MENTAT Non-Linear

SUPERB SUPERTAB

ST_D_E

SAP7

P_EC

NISA

General

Purpose

General

Purpose

General

Purpose

General

Purpose

General

Purpose

Finite Element London, LUSAS General

Analysis Ltd. England Purpose

ABAQUS Non-Linear

ADINA

G.T. STRUDL

Cosmic NASTRAN

COSMOS/M

Hibbit, Karlson

& Sorenson

MIT

Georgia Inst.

of Tech.

Universal

Analytics inc.

SRAC

Providence,

RI

Cambridge,

MA

Atlanta,

GA

Los Angeles,

CA

Santa Monica

CA

Non-Linear

Civil &

Structural

General

Purpose

General

Purpose

Table 3 - Finite Element Analysis Systems

...... 16 -

As part of the survey we have familiarized ourselves with the capabilities of

most of the above packages. In addition to obtaining and studying the manuals

for MSC/NASTRAN, ANSYS, STARDYNE and MARC, we closely evaluated

PATRAN, Pafec, G.T.Strudl, NISA, Cosmic NASTRAN etc.

As suggested by Henry Fong [5] the packages have been evaluated on such

topics as Documentation quality (various manuals), user support, training and

service facilities, element library, material library, sohlti_ or)tions, ei_envalue

extraction and time integration schemes etc. A typical comparison chart is given

below.

. H. H. Fong, ':An evaluat, ion of Eight U.S. General Purpose Finite Element

Compute Program," Proceedings of the 23rd AIAA/ASME/ASCE/AHS

,.q_ructures, Structural Dynamics, and Materials Conference. 1pp. 145-160

(10-12 May 1982).

- 17- .:

A close rapport has been established with key personnel behind some of these

products and efforts were made to contact individuals who can assist us with the

Formulation of package specific rule base of the ADEPT system.

ANSYS and MSC/NASTRAN were the obvious choices among those sur-

veyed. Besides their popularity in the market place (controlling more than 50%

of FEA market place), the user support, the availability of expertise, and the

widespread approval in aerospace and automotive industries were some of the

key factors in arriving at the selection. Additionally, their stand-alone pre and

post processors could be used for some of the functions not supported by AutoSo-

lid. A decision was made to formulate the package specific rule bases for these

t,wo and extend the rule base later on to other packages. As mentioned in the

monthly reports, these two analysis packages have already been obtained and

installed on in-house work stations. Finally, AutoSolid, the chosen CAD and

Irinite Element Modeling, package has smooth interfaces to these two packages.

A few special purpose packages were also evaluated as covered in Structural

Mechanics Software Series but it was decided to extend the rule base to them

o_lly in the advanced stages of the ADEPT project and thus none has been

acquired. We hope to obtain some of the packages outlined in the Cosmic

software catalogue (or NASA specific special purpose packages) for this purpose.

4. Expert System Considerations One of the principal goals of the task one

(,tlbrt was to evaluate the currently available expert system development environ-

,,J(_nts. This section presents the results of this study. First, a survey of expert

sy._t, em shell tools and methodologies is discussed. Next, the anticipated needs for

the ADEPT system are evaluated. Two packages arei_then discussed in greater

dc, lail. Finally, an expert system shell is chosen.

4.1. Surveys of Available Expert Systems There is currently an abun-

(Innce of expert system development shells available spanning price ranges from a

Few hundred to tens of thousands of dollars. Two papers surveying the current

iIl:_rket, [6,7] were especially useful in this study. A summary of the relevant

dnt.a from these papers, together with additional information from expert systems

professional journals are presented in Table 4. While almost all tools offered

development interfaces that aid in the debugging of the expert system, there were

Several significant differences among them.

Hypothetical reasoning is a characteristic not shared by all tools. This

fe;,ture allows an expert system to consider multiple solutions to a given problem

a,_d determine the best solution.

6. C. J. Culbert, Expert System Building Tools , NASA Memorandum

FM7(86-19), Johnson Space Center (Feb 11, 1986).

T. G. D. Riley , Timing Tests of Ezpert System Building Too_ , NASA

Memorandum FM7(86-51), Johnson Space Center (Apr 3, !986).

- 18-

Uncertainty management is a feature found in some but not all systems. This

provides a way to assess the confidence of certain fact assertions. Furthermore, a

"calculus of uncertainty" provides a mathematical means of determining the

confidence associated with a conclusion based on less than certain premises.

The ability to integrate with other programming languages is a feature that

is shared by most of the tools. This property allows calling procedures produced

outside the realm of the expert system. This is especially important when dealing

in an engineering environment such as the ADEPT system in which a large

amount of numeric procedural.computation is required.

Embeddability into application software is an important feature that allows

the application to call on the expert system as a procedure.

Portability of the expert system is an important feature when embedding the

system into an otherwise portable application. Many of the most robust tools are

dedicated to certain hardware platforms designed for expert systems use. This

greatly limits there usefulness as part of a system architecture which, for market-

ing reasons, needs to run on a variety of platforms.

Execution speed and the cost of the tool are the traditional measuring sticks

for any software product and these two factors vary widely (Table 5).

Knowledge representation provides another significant difference among the

systems. One approach is the use of rules fired based on a fact data base. These

,',le._ may be forward chaining (searching forward from established facts for a

t)articular solution) or backward chaining (searching backw.urds from a known

condition for the facts that may have created the condition). Another approach is

the use of frames to describe object data. Frames area collection of slots that

describe the attributes of an object. Still another approach is the use of semantic

.nets th.at relate networks of objects.

The type of expert system needed by the ADEPT application will be a rule-

Fat,:t, base, primarily forward chaining but with some use of backward chaining.

I Iypo(,hetical reasoning will be needed as well as the ability to integrate with

other languages and embeddability. Portability is a major issue as the final plat-

I'orm or platforms will be dictated largely by market considerations. While exe-

cutAon speed is a concern, we do not anticipate having to make large data base

searches so it is not critical. The use of frames or semantic nets do not seem

appropriate. Uncertainty management does not seem to be a factor, either.

Based on. these requirements, two packages have been evaluated i.n dept._h_;

t':_" Ll e In erenee Corporation and CLIP8 by NASA' Artificial lntellesence
Section. These two packages have basically the same capabilities although ART

certainly has a more robust development environment. Both incorporate forward

and backward chaining rules. ART provides a simple syntax for both while

(:LIPS provides simple syntax for forward chaining rules but not for backward

- 19- :

chaining. Backward chaining is possible with CLIPS but one must build his own
constructs to utilize this method. This is not difficult, just not as straightforward

as ART.

ART provides a feature called a schema which makes use of semantic nets.

This feature allows one to define a collection of facts that are interrelated. In

addition, certain facts may be inherited based on other facts in the schema.

Related schema may even inherit facts. This adds a bit of automation to the

fact assertion process. CLIPS has no direct feature comparable to this, but it is

perceived that one could be constructed. However, we do not anticipate the need

for this type of feature.

Portability is clearly an advantage for CLIPS as it is written in the C pro-

gramming language and will easily compile on a number of systems. ART, on

the other hand, is written in LISP and is limited to a few systems although work

is underway on a version written in the C language.

Cost is also an advantage for CLIPS as it is in the public domain for govern-

ment work and can be obtained for a nominal cost for non-government work.

Execution speed has been an advantage for ART in the past but later revi-

sions of CLIPS show marked improvements in this area.

Based on these findings, CLIPS is selected to be the expert system shell used

for the ADEPT application.

• .

- 20 -

Tool a b e

ART " X)C 'X

KEE o X

KnowledgeCraft X o o

S.1 X

ESE o X

ICES o X

OPS5 X

OPSS+ X

0PS83 X

CLIPS X X X

d

X

X

X

X

e

x
X

0

X

X

X

X

X

X

f

X

X

X

X

X

X

X

X

g

X

X

X

X

X

X

h

LISP/C
LISP

Common LISP

LISP/C
Pascal

LISF/C
LISP

C

C

C

a - Forward Chaining

b - Backward Chaining

c - Hypothetical Reasoning

d - Object Description

e - Feature Integration

f- Language Integration

g - Embeddable

h - Base Language

X - Full implementation

o - Partial implementation

Table 4 - Features of Common Expert Sys.tem Shells

- 21 <.

Tool(Version)

ART(V2.0)

OPSS(VAXv2.0)
OPS5(Forgy VPS2)

CLIPS(V4.1)

ART(V2.0)
CLIPS(V2.30)
CLIPS(V4.1)

CLIPS(V2.30)
CLIPS(V2.30)
OPS5+(V2.0003)

CLIPS(V2.3)

OPS5+(V2.0002)

ART(V Beta 3)

oPs5+(v2.ooo3)
CLIPS(V2.10)

ExperOPS5(V1.04)

CLIPS(V2.10)

KEE(V2.1.66)

Platform Seconds

Symbolics

VAX

Symbolics

Kaypro386

TI Explorer

Sun

IBM AT

VAX
I-tP Workstation

IBM AT

tIP9000

Macintosh

VAX

IBM PC

IBM AT

Macintosh

IBM PC

Symbolics

1.2

1.3

1.7

2.0

2.4

3.0

4.0

5.0

5.0

5.2

13

14

17

19

19

55

57

165

Table 5 - Relative Performance of Some Expert System Shells

-i_ °

,¢._-

-22-

Appendix]3

General Knowledge Rule Base for Clips

-23-

;/* CLIPS Version 4.20 4/29/88*/
;/*
• * Copyri'ght (C)Autodesk, Incorporated, 1990.

• Fun_edby NASA under Contract # NAS3-25150.
;*/

• * STAGE 0 RULES *

; * Get information to begin modeling session.
; * Get Solid's name, geometry, loads, bcs..
; * [Check load balance]
; * [Check that the bcs given are sufficient for mathematical stability]
; * Get Pur_pose of analysis - how detailed(big) must model be
; * Get definition of resources - max size of model(nodes, elements, or DOF)
; * There are 2 different modes used. One is Setting, the other is Showing.

; * Once dips is started the mode is chosen as setting.
; * Menu 1 is targeted as next.
(defrule Get:Started '"'

?i-f <-(initial-fact)
=_

(retract ?i-f)
(assert (Menu 1))
(assert (Setmode 0))
(assert (Stage 0))

; * These are the default settings for the resources menu.
(deffacts Menu:One '"'

(Stage 0)
(Purpose O)
(Hardware O)
(Software1
(Software2 0/

(Time 1)

; * Make sure the user enters Adept with a solid.
(defrule Get:Solid '"'

(Stage 0)
(not (Solid ? ?))

=>

(assert (Solid = (get-solid-name) NULL))
)

-..°

; * Generate the par am.,.eters
(defrule Main:Menu

(Stage (3)
(Setmode ?switch)
(Solid ? ?)
?fl<-(Menu 1)
?f2<-(Purpose ?purp)
?f3<-(Hardware ?hard)
?f4<-(Softwarel ?soft1)
?f5<-(Software2 ?soft2)
?f6<-ffime ?time)

menu with the current settings.

- 24 -

=>

(bind ?ret-val (menul-out ?purp ?hard ?soft1 ?soft2 ?time ?switch))
(retract ?fl ?f2 ?f3 ?f4 ?f5 ?f6)
(assert (Purpose = (menul-lbk)))
(assert (Hardware = (menul-2bk)))
(assert (Software1 = (menul-3bk)))
(assert (Software2 = (menul-4bk)))
(assert (Time = (menul-Sbk)))
(if (= ?switch 0)
then

;This is the set mode
(if (= ?ret-val -1)
then

(assert (Restart))
else

(assert (Menu 2))
)

else

;This is the check settings mode
(if (= ?ret-val -1)
then

(assert (Menu 5))

)
)

)

; * Characterize the solid as a stock with protrustions and depressions.
(defrule Characterize '"'

(Stage 0)
?fl<-(Menu 2)

=> 7.

(menu2-out)
(retract ?fl)
(assert (Menu 3))

; * Allow the user to apply/remove loads and boundary conditions.
(defrule Get:Forces ""

(Stage 0)
(Setmode ?switch)
?fl<-(Menu 3)

=>

(bind ?ret-val (get-forces ?switch))
retract ?fl)
if (= ?switch 0)

then

;This is the set mode
(if (=
then

else

)

?ret-va1-1)

(assert (Exit))

(assert (Loadbcs Obtained))

else

-25-

;This is the check settings mode
(if (= ?ret-val -1)
then

(assert (Loadbcs Obtained))

)
)

)

; * If stress is not generated by lbc set, inform the user.
(defrule Nostress:Option "'

(Stage 0)
(Loadbcs Obtained)
?f2K-(Give User Warning 1)

(retract ?f2)
(bind ?retval (lbc-accept-option))
(if (= ?retval 0)
then

(assert (Loadset Bad))
else

(assert (Stress Generated))

)

; * In case of rig_cy'd bod motion allow the

(defrule UnstalSIe:Option '"'
(Stage 0)
(Loadbcs Obtained)
?f2<-(Give User Warning 2)

=_

(retract ?f2)
(bind ?retval (Ibc-accept-option))
(if (= ?retval 0)
then

(assert (Loadset Bad))
else

assert (Stability Yes))
assert (Direction-x Waved))
assert (Direction-y Waved))

(assert (Direction-z Waved))
(assert (Stress Generated))

user to continue if warned.

; * If the first set of lbcs is not acceptable, let them be set again.

(defrule Get:NewForces '"'
(Stage 0)
?fl <-(Loadbcs Obtained)
?f2<-(Loadset Bad)

=_>

(retract ?fl ?f2)
(assert (Redo Loadbcs))

- 26-

; * Obtain the existence and sum of forces in x, y, and z.

(defrule Check:Forces '"'
(Stage 0)
(Loadbcs Obtained)
(not (Sigmaz ?))

-->

(check-forces)
)

; * See if bcs are fixed or imposed displacements are in x, y, or z.

(defrule Check:Bcs ""
(Stage 0)
(not (Bc_limz ?))
(Loadbcs Obtained)

=>

(check-bcs)

; * If there is a nonzero force in x, y, or z then we have stress.
(defrule Generate:Stress1 '"'

(Stage 0)
(Sigmaz ?)
(or (Pressure Yes)

(Forcex Yes)
(Forcey Yes)
(Forcez Yes))

=>

)
(assert (Stress Generated))

; * If we didn't pass the first test then we failed test one.
(defrule Failed:Stress1

(Stage 0)
(Sigmaz ?)
(and (Pressure No)

(Forcex No)

(Forcey No)
(Forcez No))

(not (Stress Generated))

(assert (Strgenl Failed))

; * See if boundary conditions will generate stress.
(defrule Generate:Stress2 '"'

(Stage 0)
?fl <-(Strgenl Failed)
(Bc_tLmz?)
(or (and (Bc_limx Yes) .

(Bc_fixx Yes))
(and (Bc_limy Yes)

(Bc_fixy Yes))
(and (Bc_limz Yes)

(Bc_fixz Yes)))

f

- 27 -

=>
(not (Stress Generated))

(retract ?fl)
(assert (Stress Generated))

; * If boundary_ conditions don't generate stress then we failed the test.

(defrule Failed:Stress2 '"'
(Stage 0)
?fl <-(Strgenl Failed)
(Bc_limz ?)
(and (Bc_limx No)

(Bc_limy No)
(Bc limz No))

(not (Stress Generated))
=>

retract ?fl)
assert (Strgen2 Failed))

; * The fact (Stress Generated) is returned if the function check-bc-stress
; * determines that the imposed boundary conditions will be sufficient to
; * _enerate stress in at least one of the t_ree directions.

; * Otherwise (Strgen2 F aii,,ed) is returned.
(defrule Generate:Stress3

(Stage 0)
?fl <-(Strgenl Failed)
(Bc_limz ?)
(or (and (Bc_limx Yes)

(Bc_fixx No))
(and (Bc_limy Yes)

(Bc_fixy No))
(and (Bc_limz Yes)

(Bc_fixz No)))
(not (Stress Generated))

=>

(retract ?fl)
(check-bc-stress)

; * If no conditions exist which will generate stress then inform the user
; * that either forces or bc_limited (imposed displacements) will need to

; * be a lied to have an analysis.
(defrulP_o:Stress

(Stage 0)
?f2 <-(Strgen2 Failed)

=>

(retract ?f2)
(cl-oneline "Current Load/Bc set does not generate stress.'$
(assert (Give User Warning 1))
(assert (Loadset Bad))

; * Return the user to the loads/bcs menu

- 28-

; * SOthat a different set of conditions will be generated.
(defrule Redo:Loadbcs '"'

(Stage 0)
?fl <- Redo Loadbcs)
?f2 <-Bc_fixx ?)
?f3 <- Bc_fixy ?)
?f4 <- Bc_fixz ?)

?f5 <-Bc limx ?)
?f6 <-, Bc_limy ?)
?f7 <- Bc._lirr&?)
?f8 <-(Forcex ?)
?f9 <-(Forcey ?)
?riO <-(Forcez ?)
?fll <-(Sigmax ?)
?f12 <-(Sigmay ?)
?f13 <-(Sigmaz ?)
?f14 <-(Pressure ?)

=>

retract ?fl ?f2 ?f3 ?f4)
retract ?f5 ?f6 ?f7 ?fS)

(retract ?f9 ?fl0 ?f11)
(retract ?f12 ?f13 ?f14)
(assert (Menu 3))

=>

; * Check1 for stability in the
(defrule Checkl:Directionx ""

(Stage 0)

(Stress Generated)
(Bc_timz ?)
(or (Bc fixx Yes)

(Bc_.limx Yes))

x-direction

(assert (Direction-x Stable)) •

; * Check2 for stability in the x-direction
(defrule Check2:Directionx '"'

(Stage 0
(Stress _enerated)

(Sigmax ?totalx)

(and (Bc_fixx No)
(Bc_limxNo))

=2>

(bind ?small (get-epsilon))
(if (< = ?totaLx ?small)
then

(assert (Direction-x Math-stability-needed))
else

(ci-oneline "Abc is required in the X-direction.')
(assert (Direction-x Unstable))

)

- 29 -

; * Check1 for stability in the, y-direction
(defrule Checkl:Directiony

Stage 0_
Stress Generated)

(Bc_nrr ?)
(or (Bc_fixy_ Yes)

(Bc_Iimy Yes))

(assert (Direction-y Stable))

; * Check2 for stability in the, y-direction
(defrule Check2:Directiony

(Stage 0)
(Stress Generated)

(Sigmay ?totaly)
(and (Bc ftxy No)

(Bcjirny No))
=>

(bind ?small (get-epsilon))
(if (< = ?totaly ?small)
then

(assert (Direction-y Math-stability-needed))
else

(cl-oneline "A bc is required in the Y-direction.'1
(assert (Direction-y Unstable))

; * Check1 for stability in th, e ' z-direction
(defrule Checkl:Directionz

(Stage 0)
(Stress Generated)
(Bc_limz ?)
(or (Bc_fixz Yes)

(Bc_limz Yes))
=>

)
(assert (Direction-z Stable))

; * Check2 for stability in the z-direction
(defrule Check2:Directionz '

Stage 0_
Stress Generated)

(Sigrnaz ?totalz)
(and (Bc_fixz No)

(Bc_limz No))
=>

(bind ?small (get-epsilon))
(if (< = ?totaIz ?sxhall)
then

(assert (Direction-z Math-stability-needed))
else

(cI-oneline "A bc is required in the Z-direction.'1

- 30 -

(assert (Direction-z Unstable))

; * Check for overall stability x,y and z
(defrule Stability:OveraU '"'

(Stage 0)
(Direction-x ?x)
(Direction-y ?y)
(Direction-z ?z)

=>

(if (neq ?x Unstable)
then

(if (neq ?y Unstable)
then

(if (neq ?z Unstable)
then

(assert (Stability Yes))
else

(assert (Stability No))
)

else

)
else

(assert (Stability No))

(assert (Stability No))
)

)

; * If we have a case of unrestrained force then inform'the user

; * to supply a different set of loads and boundary conditions.
(defrule Stability:Problems '"'

(Stage 0)
?fl <-(Stability No)
(Stress Generated)
?f4 <-(Direction-x ?)

?f5 <-(Direction-y ?)
?f6 <-(Direction-z ?)

=_

(retract ?fl ?)f5(retract ?f4 ?f6)
(d-oneline "Current Load/Bc set allows rigid body motion.'_

(assert (Give User Warning 2))

; * If the Ibcs are acceptable, clean up the fact list and continue.
(defrule LBCs:Acceptable '"'

Stage (3)
Setmocle ?switch)

(Purpose ?)
(Hardware ?)
(Software1 ?)
(Software2 ?)
(Time ?)

- 31-

=>

?fl <-(Loadbcs Obtained)
?f2 <-(Stress Generated)
?f3 <-(Stability Yes)
?f4 <-(Direction-x ?)
?f5 <-(Direction-y 7)
?f6 <-(Direction-z ?)

retract ?fl ?f2 ?f3 ?f4)
retract ?f5 ?f6)
if (= ?switch 0)

then

(assert (Menu 4))
else

(assert (Menu 5))
)

; * Allow the user to rank those various regions.

(defrule Regions '"'
(Stage 0)
(Setmode ?switch)
?fl<-(Menu 4)

=>

(bind ?ret-val (get-region ?switch))
(retract ?fl)
(if (= ?switch 0)
then

(if (= ?ret-val -1)
then

(assert (Redo Loadbcs))
else

(assert (Menu 5))
)

else

(if (= ?ret-val -1)
then

(assert (Menu 5))
)

; * Allow the user to review or alter any information in stage 1.

; * This includes parameters, resources, Ibcs, and region rahking.
(defrule Show:Settings1

?f3<-(Stage 0)
?fl<-(Menu 5)
?f2<-(Setmode ?switch)

=>

(bind ?ret-val (menu-show-set1))
(retract ?fl ?f2)
(if (= ?ret-val 0)
then

assert (Setmode 1))
assert (Menu 1))

- 32-

if (=

then

lif (=

then

)
(if C--
then

)
(if C=
then

?ret-val 2)

assert (Setmode 1))
assert (Redo Loadbcs))

?ret-val 3)

assert (Setmode 1))
assert (Menu 4))

?ret-val 4)

(assert (Exit))
(retract ?f3)

?ret-val 5)

assert (Setrnode 0))
assert (Menu 6))
retract ?f3)

; * Categorize the geometn,'c characteristics.
(defrule Geom:Symmetry

?fl<-(Menu 6)
?f2<-(Setmode ?switch)

=>

(bind ?ret-val (get-cgeom ?switch))
(retract ?fl ?f2)
(if (= ?switch 0)
then

(if (= ?ret-val -1)
then

assert (Setmode 1))
assert (Exit))

else

else

assert (Setmode 0))
assert (Menu 7))

(if (= ?ret-val -1)
then

assert (Setmode 1))
assert (Menu 8))

)

; * Characterize the Ibc attributes as they relate to the geometric ones.

(defrule Load:Symmetry '"'
(Setmode ?switch)
?fl<-(Menu 7)

- 33-

=>
ind ?r'et-val (get-clbc ?switch))
tract ?fl)

?switch 0)

(if (= ?ret-val -1)
then

(assert (Menu 6))
else

(assert (Menu 8))

)
else

(if (= ?ret-va1-1)
then

(assert (Menu 8))
)

; * Allow the user to review or alter the geometric and lbc settings.

(defrule Show:Settings2 '"'
?fl<-(Menu 8)
?f2<-(Setmode ?switch)

=>

ind ?ret-val (menu-show-set2))
tract ?fl ?f2)

(if (= ?ret-val 0)
then

(assert (Setmode 1))
(assert (Menu 6))

)
(if (= ?ret-val 1)
then

(assert (Setmode 1))
(assert (Menu 7))

)
(if (= ?ret-val 2)
then

(assert (Exit))
)
(if (= ?ret-val 3)
then

assert (Setmode 0))
assert (Determine chars))

)

; * assert facts about the j_eometry and the lbc set.
(defrule Get:Geomchars

?fl<-(Determine chars)
=>

(bind ?ret-vall (get-geom-chars))
(bind ?ret-val2 (get-Ibc-chars))
(retract ?fl)

--2

- 34 -

assert (Reorient Loadbcs))
retract ?fl)

; * After the reorientation clear the current load bc table
; * and refill the table after any possible rotations.
(defrule Reorient:Loadbcs ""

?fl <- Reorient Loadbcs)
?f2 <-Bc_fixx ?)
?f3 <- Bc_fixy ?)
?f4 <- Bc_fixz ?)
?f5 <- Bc_limx ?)
?f6 <- Bc_limy ?)
?f7 <- Bc_limz ?)
?f8 <- Forcex ?)
?f9 <-(Forcey ?)
?riO <-(Forcez ?)
?fll <-(Sigmax ?)
?f12 <-(Sigmay ?)
?f13 <-(Sigmaz ?)

=>

retract ?fl ?f2 ?f3 ?f4)
retract ?f5 ?f6 ?f7 ?f8)

(retract ?f9 ?fl0 ?f11)
(retract ?f12 ?f13)
(check-forces)
(check-bcs)
(assert (Simplification Checks))

; * Check for plane stress and plane strain cases. Assert
; * facts in the event these cases exist.
(defrule Plane:Stressstrain '"'

(declare (salience 35))
(Simplification Checks)
(or (and (Geom Extrx True)

(Lbc Extrx True))
(and (Geom Extry True)

(Lbc Extry True))
(and (Geom Extrz True)

(Lbc Extrz True)))
=>

(check-strain)
)

; * This is left as an alternate way to generate plane stress/strain checks.
;(defrule Plane:Stressx '"'
; (declare (salience 35))
; (Simplification Checks)

(Geom Extrx True)
Lbc Extrx True)
Forcex No)
Bc_fixx No)
Bc_limx No)

- 35 -

;=>

;)
(assert (Plane Stress x))

;(defrule Plane:Stressy '"'
; (declare (salience 35))
; (Simplification Checks)
; (Geom Extry True)
; (Lbc Extry True)
; (Forcey No)
; (Bc_fi No)
; (Bc_limy No)
;=>
; (assert (Plane Stress y))
;)

;(defrule Plane:Stressz

I

I

I

I

I

;=>

;)

_tt!

declare (salience 35))
Simplification Checks)

(Geom Extrz True)
(Lbc Extrz True)
(Forcez No)
(Bc_fixz No)
(Bc_limz No)

(assert (Plane Stress z))

;(defrule Plane:Strainx

I

;)

(declare (salience 35))
(Simplification Checks)

(Geom Extrx True)
(Lbc Extrx True)
(Bc_fixx Yes)

t

If both ends are fixed in the extrusion direction then we have

plane strain.
(check-strain)

;(defrule Plane:Strainy '"'
; (declare (salience 35))
; (Simplification Checks)
; (Geom Extry True)
; (Lbc Extry True)
; (Bc_fixy Yes)
._
J

; (check-strain)
;)

;(defrule Plane:Strainz '"'
; (declare (salience 35))
; (Simplification Checks)
; (Geom Extrz True)

- 36 -

; (Lbc Extrz True)
; (Bc_fixz Yes)
°_-_

; (check-strain)
;)

; * If geometry and lbcs mirror along x-axiz then request half of solid.
(defrule Mirror:x

Ldedare (salience 20))
Simplification Checks)
Geom Mirx True)

bc Mirx True)
=_>

(assert (Reducex Yes))

; * If geomet, ry and Ibcs mirror along y-axiz then request half of solid.
(defrule Mirror:y '"'

(declare (salience 20))
(Simplification Checks)
(Geom Miry True)
(Lbc Miry True)

=_

(assert (Reducey Yes))
)

; * If geometry and lbcs mirror along z-axiz then request half of solid.
(defrule Mirr6r:z '"'

(declare (salience 20))
(Simplification Checks)
(Geom Mirz True)
(Lbc Mirz True)

(assert (Reducez Yes))

; * If there is no way to reduce the direction, assert a fact.
(defrule NoMirror:x "'

dedare (salience 10))
Simplification Checks)
not CReducex Yes))

(assert (Reducex No))

; * If there is no way to reduce the direction, assert a fact.

(defrule NoMirror :y-'"'
(declare (sallence 10))

(Simplification Checks)
(not (Reducey Yes))

(assert (Reducey No))
)

- 37 -

; * If there is no way to reduce the direction, assert a fact.
(defrule NoMirror:z '"'

declare (salience 10))

Simplification Checks)
not (Reducez Yes))

->

(assert (Reducez No))

; * Leave this as a way to classify the revolution cases in the
; * event of a partial revolution.
;(defrule Revolve:x '"'
; (declare (salience 20))
; (Simplification Checks)
; (Geom Revx True)
; (Lbc Revx True)

J

; (assert (Revolve x))

; (degree-rev)
;)

;(defrule Revolve:y ""
; (declare (salience 20))
; (Simplification Checks)
; (Geom Revy True)
; (Lbc Revy True)
;=_
; (assert (Revolve y))
; (degree-rev)
;)

;(defrule Revolve:z '"'

J

;=>

;)

(declare (salience 20))
(Simplification Checks)

(Geom Revz True)
(Lbc Revz True)

assert (Revolve z))
degree-rev)

; * When we are done reducing the solid proceed with choice of element type.
(defrule Simplify:over '"'

(declare (salience 5))
?fl<-(Simplification Checks)

=_

retract ?fl)

assert (Elemtype Checks))
)

; * For plane stress/strain use a special case element.
(defrule Elem0:Check '"'

dedare (salience 60))
not (Element ?))

,r

- 38 -

(or (Plane Stress)
(Plane Strain))

(Elemtype Checks)

assert (Element Membrane))
assert (Element Special Case))
assert (Reduce Solid))

;(defrule Eleml:Check '"'

;=_

;)

dedare (salience 45))
not (Element ?))
Elemtype Checks)

(Dimension twod)
(Lbc Parallel)
(Curvature Flat)

(assert (Element Membrane))
(assert (Reduce Solid))

; * Use shell element type for thin shell solids.
(defrule Elern2:Check ""

dedare (salience 45))
not (Element ?))

(Elemtype Checks)
(Dimension twod)
(Lbc ?)

=_

assert (Element Shell))
assert (Reduce Solid))

; * If the solid is 3d and not a plane case then use solid element type.
(defrule Elem3:Check '"'

dedare (salience 45))
not (Element ?))
Elemtype Checks)

(Dimension threed)

(not (Plane Stress))
(not (Plane Strain))

(assert (Element Solid))
(assert (Reduce Solid))

; * If the element type has not been classified already, then use solid.
(defrule Elemlast:Check '"'

(declare (salience 5))
Elemtype Checks)
not (Element ?))

assert (Element Solid))
assert (Reduce Solid))

- 39 -

; * If there is a direction that the solid can be reduced in then just do it.
(defrule Reduce:Solid '"'

?fl<-(Reduce Solid)
?f2<-(Reducex ?x)
?f3<-(Reducey
?f4<-(Reducez ,?Ty_

=>
reduce-solid ?x ?y ?z)
symm-bc ?x ?y ?z)
retract ?fl)
assert (Set Elemtype))

; * Set the element type,,via the api classification.
(defrule ElemSet:Clear

?fl<-(Elemtype Checks)
?f2<-(Set Elemtype)
(Element ?etype)

=>
(if (eq ?etype Solid)
then

(bind ?ret-val (set'elemtype "AP_EL_LTETRA'))
)
(if (eq ?etype Shell)
then

(bind ?ret-val (set-elemtype "AP_EL_LSHELL'_)
)
(if (eq ?etype Membrane)
then

(bind ?ret-val (set-elemtype "AP_EL_LTRIAN'))
)
(if (= ?ret-val 0)
then

(assert (Trouble Setting Element Type))

Iretract ?fl ?f2)

(assert (Octree Checks))

; * Get ready to mesh with solid element type.
(defrule Mesh:Solid '"'

(Element Solid)
?fl<-(Octree Checks)

=>

setup-mesh-solid)
retract ?fl)

(assert (PreMesh Set))

; * Get ready to mesh wi!h surface element type.
(defrule Mesh:Extrusion

(Element Membrane)

- 40 -

(Element Special Case)
?fl<-(Octree Checks)

setup-mesh-extrusion)
retract ?fl)
assert (PreMesh Set))

;(defrule Mesh:Planar '"'

;=>

;)

Element Membrane)
not (Element Special Case))

?fl<-(Octree Cfiecks)

(setup-mesh-planar)
(retract ?fl)
(assert (PreMesh Set))

; * Get ready to mesh,with surface element type.
(defrule Mesh:Shell '

(Element Shell)
?fl<-(Octree Checks)

(setup-mesh-shell)
(retract ?fl)
(assert (PreMesh Set))

; * Set all the mesh parameters and generate a mesh.
(defrule Mesh:Review '"'

?fl<-(PreMesh Set)
=_

(mesh-parameters)
'(retract ?fl)
(generate-mesh)
(assert (Mesh Exists))

; * When clips is over return control to api program.
(defrule Clip-s:Finished '"'

?fl<-(Mesh Exists)
=>

retract ?fl)
clips-over)

)

- 41 -

Appendix O

Analysis Problems with Resulting Meshes

rq

-42-

Extrusion Problem

-43-

Planar Mesh with One Mirror Plane

Oleo

_D

IImO

Q

O

!

!

- 45 -

i

-_Z

Shell Elements with One Mirror Plane
and Features Filtered

-46-

Jl

Turbine Blade Problem

- 47-

\

/

. i

Solid Elemen_ with No Mirror Planes

Q
0

n

0
I=u

I"1

0
0"

!

I

o
$1to

B

rm

IgmO

Z_j

O

IndO

n,I
i,t
0

Om_

!

!

o

